CONVENIENT SYNTHESES OF SUBSTITUTED PYRANOID GLYCALS FROM THIOPHENYL GLYCOSIDES AND GLYCOSYL PHENYLSULFONES'

Alfonso Fernandez-Mayoralas, Albert0 Marra, niche1 Trumtel, Alain Veyrieres and Pierre Sinaji* Ecole Normale Supérieure, Laboratoire de Chimie, UA 1110, *24 Rue Lhomond. 75231 Paris Cedex OS, fiance*

Abstract: A series of substituted thiophenyl glycosides and glycosyl **phenylsulfones were converted in high yield into glycals after reductive lithiation with lithium naphthalenide, followed by elimination of the substituent at C-2.**

Pyranoid glycals are useful intermediates in synthetic carbohydrate chemi stryz , **especially as precursors of glycosyl donors3. An interesting method for their preparation involved the formation of an unstable C-l anion from a glycosyl** *halide,* **either with lithium in liquid ammonia4, or with sodium naphthalenide in tetrahydrofuran at room temperatures, followed by a fast S-elimination of the C-2 leaving group.**

Thiophenyl glycosfdes **offer efficient temporary protection of the anomeric center and are** *stable* **under a variety of reaction conditions (acylation, alkylation, acetal formation). They have thus attracted considerable attention, especially as glycopyranosyl donors in oligosaccharide synthesess . The already observed7 reductive lithiation of a sulfide suggests an** attractive possibility⁸ of circumventing the preparation of a glycosyl halide as an intermediate to the synthesis of a glycal. We would like to **report several new, direct and highly efficient conversions of various thiophenyl glycosides --or the corresponding glycosyl phenylsulfones--into glycals, which are compatible with both acid and base labile protecting groups.**

When a thiophenyl glycoside was treated with lithium naphthalenide (LN) (2 equiv.) in THF at -78°C, the corresponding glycal was usually obtained in high yield (see Table I)¹⁰. The interest of this procedure is **outlined by the smooth conversion of disaccharide 9 into the glycal 17, an** intermediate in the synthesis of orthosomycin fragments¹⁸. The sensitivity of the 2'-deoxy glycosidic linkage in 9 precludes the use of acidic **conditions, and the presence of benzyl ethers calls for a selective reductive system.** Diacetate 5 was also converted into glycal 14, a result **which enlarges the scope of the method. This is in sharp contrast with the behavior of the dibenzoate 1, where no trace of galactal was isolated as a result of a selective electron transfer on the benzoyl group at C-2. In the case of @, concomitant 0-debenzylation could not be avoided so that the** allylic alcohol 16 was obtained.

Table I. Conversion of thiophenyl glycosides into glycals^a.

a Conditions: 2.0 equiv. of a 1M LN solution in THF, THF, - 78°C. In the case of substrate $1, 3$ and $9,$ the reaction mixture was stirred for 30 min at of the starting material -78° C after disappearance $(t, 1, c,)$, then neutralized at -78°C (THF-acetic acid, 4:1), to avoid 0-debenzylation. In other instances, the reaction mixture was neutralized at room temperature. In case of unavoidable concomitant cleavage of protecting groups (reductive lithiations of $\frac{5}{2}$ and $\frac{3}{2}$, the amount of LN to be used will be higher than 2 equiv. (control of the reaction by t.l.c.).

As anomeric phenylsulfones are known to undergo fast reductive I **ithlationlg, an extension of the reaction for the preparation of glycals has now been developed (see Table II).**

Table **II. Conversion of glycosyl phenylsuifones into glycalsa**

aconditions: see Table I (more than 2 equiv. of LN were used for the conversion of 20 into l4).

References and notes

- **Part of this work was presented at the 14th International Carbohvdrate** 1 Symposium, Stockholm (Sweden), (1988) B35, p. 189.
- $\overline{2}$ R.J. Ferrier, Adv. Carbohydr. Chem. Biochem., 24, 199 (1969), and **references therein.**
- **Selected examples: R.U. Lemieux and R.M. Ratcliffe, Can. J. Chem., 57,** 3 **1244 (1979); B.J. Fitzsimmons, Y. Leblanc, N. Chan and J. Rokach, <u>J</u> Am. Chem. Sot., 110, 5229 (1988); S. Honda, K. Kakehi, H. Takai and K.** Takiura, <u>Carbohydr. Res</u>., <u>29</u>, 477 (1973); K. Tatsuta, K. Fujimoto, M. **Kinoshita and S. Umezawa, Carbohvdr. Res., 54, 85 (1977); J. Thiem, H. Karl and J. Schwentner, Synthesis, 696 (1978); 0. Jaurand, J.-M. Beau and P. Sinay, J. Chem. Sot.. Chem. Commun., 572 (1981); Y. Ito and T.** Ogawa, Tetrahedron Lett., 28, 2723 (1987); R. Preuss and R.R. Schmidt, **Synthesis, 694 (1988).**
- 4 **R.E. Ireland, C.S. Wilcox and S. Thaisrivongs, J. Org. Chem.. 43, 786 (1978).**
- 5. **S.J. Eitelman, R.H. Hall and A. Jordaan, J. Chem. Sot.. Perkin Trans I. 595 (1978).**
- For a review see: P. Fügedi, P.J. Garegg, H. Lönn and T. Norberg, Gly-6 **coconiunate J., 4, 97 (1987).**
- C.G. Screttas and M. Micha-Screttas, <u>J. Org. Chem</u>., 43, 1064 (1978). 7
- Indeed, treatment of phenyl 2,3,4,6-tetra-0-benzyl-1-thio- β -D-gluco- \bullet **pyranoside with LN (2 equiv., THF, -78*C, 15 min) resulted9 in the** quantitative formation of 3,4,6-tri-0-benzyl-p-glucal.
- **9 J.-M. Lancelin, L. Morin-Al lot-y and P. Sinay, J. Chem. Sot.. Chem. Commun.** , 355 **(1984).**
- **10 All new compounds gave satisfactory microanalytical and spectral data. Optical rotations were measured for solutions in CHCl, at 2O"C.**
- **11** Lipt<mark>ak, I. Jodal, J. Harangi, and P. Nanas</mark>i, <u>Acta Chim. Hung</u>., <u>113</u> **:;5 (1983)**
- **12 2 (m.p. 10i-103°C (hexane), [al, -66') was prepared (95%) from phenyl 1-thio-\$-D-galactopyranoside (2-methoxypropene, DMF, CSA, 1 h, 20°C).**

 $\overline{J_1}$ 2 9.5 Hz, H-1).
P.H.J. Carlsen, T. Katsuki, V.S. Martin and K.B. Sharpless, <u>J. Org.</u>

- 21 Chem., 46 , 3936 (1981).
- A severe side reaction was a fast deprotonation of the medium by the 22 strongly basic C-1 anion leading to 1,5-anhydro-2,3-di-0-benzyl-4,6-0-benzylidene-b-galactitol <46%, m.p. 95-97°C (AcOEt-hexane), $[\alpha]_D$ +76°>. This limited yield was increased by using the following radical reductive elimination:

 i) Bu₂SnO, CH₃CN, 12 h, reflux, then, Bu₄N⁺Br⁻, PhCH₂Br, 1 h, reflux
(70%); ii) CS₂, NaH, THF, ICH₃, 1 h, 25°C (79%); iii) Bu₃SnH, AIBN, PhCH₃, reflux, 10 min (90%).

To our knowledge, this represents the first example of the synthesis of a glycal²³ by a neutral radical process and is complementary to existing methods.

Radical reductive elimination has been applied to the synthesis of 23 vinyl ethers, J.-M. Vatele, Tetrahedron Lett., 25, 5997 (1984).

(Received in France 13 February 1989)